skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Servedio, Rocco"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Servedio, Rocco (Ed.)
    We study the complexity of lattice problems in a world where algorithms, reductions, and protocols can run in superpolynomial time, revisiting four foundational results: two worst-case to average-case reductions and two protocols. We also show a novel protocol. 1. We prove that secret-key cryptography exists if O˜(n‾√)-approximate SVP is hard for 2εn-time algorithms. I.e., we extend to our setting (Micciancio and Regev's improved version of) Ajtai's celebrated polynomial-time worst-case to average-case reduction from O˜(n)-approximate SVP to SIS. 2. We prove that public-key cryptography exists if O˜(n)-approximate SVP is hard for 2εn-time algorithms. This extends to our setting Regev's celebrated polynomial-time worst-case to average-case reduction from O˜(n1.5)-approximate SVP to LWE. In fact, Regev's reduction is quantum, but ours is classical, generalizing Peikert's polynomial-time classical reduction from O˜(n2)-approximate SVP. 3. We show a 2εn-time coAM protocol for O(1)-approximate CVP, generalizing the celebrated polynomial-time protocol for O(n/logn‾‾‾‾‾‾‾√)-CVP due to Goldreich and Goldwasser. These results show complexity-theoretic barriers to extending the recent line of fine-grained hardness results for CVP and SVP to larger approximation factors. (This result also extends to arbitrary norms.) 4. We show a 2εn-time co-non-deterministic protocol for O(logn‾‾‾‾‾√)-approximate SVP, generalizing the (also celebrated!) polynomial-time protocol for O(n‾√)-CVP due to Aharonov and Regev. 5. We give a novel coMA protocol for O(1)-approximate CVP with a 2εn-time verifier. All of the results described above are special cases of more general theorems that achieve time-approximation factor tradeoffs. 
    more » « less